



# **PST22 450W**

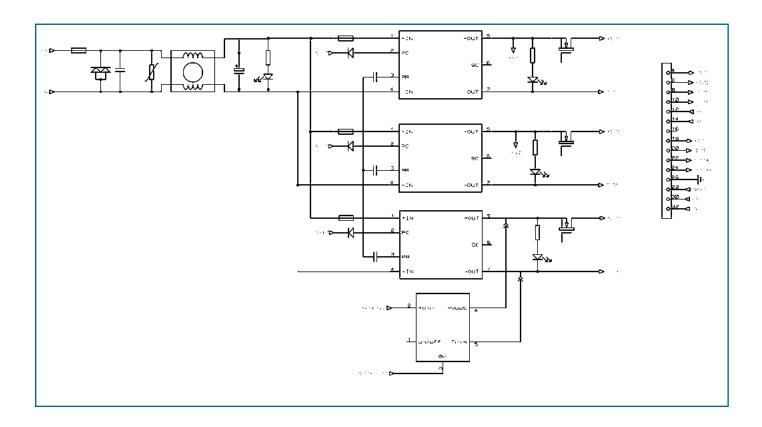
# DC-DC



# Features

24, 48, 72, 110Vdc input voltage ranges
1, 2 or 3 isolated outputs up to 450W
Very high efficiency
Surge and transient protection
Many output configurations available
Adjustable output voltage
Redundant operation (N + 1) with active circuit (no diode losses)
Extremely slim case (3U x 4TE (or 8TE) x 160mm)

Safety IEC/EN 62368-1, RoHS lead-free-solder compliant






# Description

The PST22 , very compact DC-DC converter in an eurocard format, incorporate input and output protection and filtering, signalling features, which are required in most of the severe environment for industrial, railways type of applications. The converter provides significant advantages such as flexibility of output configuration, high reliability thanks to the integration of Vicor Corp. modules, extremely high efficiency with secondary active MOSFET circuit for redundancy operation, very low ripple and noise levels, input-to-output isolation, soft start, overtemperature protection, input over/undervoltage lockout, parallel operation . The converters wide range of inputs are protected against surges and transients and EMI filtered. The outputs are countinuously short-circuit proof . Series, Parallel and N+1 redundant operation are possible through an active MOSFET based circuit, improving significantly efficiency thus lowering power dissipation and allowing operation in high temperature environment, simplifying connection when several converters are connected in parallel without the need of wire connection between the converters to ensure good current sharing. LEDs at the front panel and an isolated Powergood signals indicate the status of the converter.

V3 output can be either configured in high power version up to 150W with a DC-DC Vicor module or in a low power version up to 30W with switching regulator saving cost .







# **Options Description**

#### No Front panel (F)

### -40°C operation (T)

The PST22 is built as standard with a aluminum front panel as The thermal grade of the Vicor the DC/DC converters used and other described in the mechanical data. In applications where the com- components are changed to comply with low ambiant temperature. plete rack is covered by a single panel, the converter can be delivered without front panel.

#### N+1 Redundancy (R)

# Conformal coating (V)

The PST22 is equipped with an internal active redundant MOSFET During manufacturing process , when V option is specified, circuit providing very high reliability operation (described page 4) when components and pcb are covered with an acrylic coating to address R option.

R option.

### Very low profil 4TE (S)

With S option, the height will be reduced to 20,32mm for the front panel, making very suitable for low profil application. The heatsink being significantly reduced, thermal dissipation decrease and power



# Input

# **Electrical Input Data**

| Input                   |            |      | 24   |      |      | 48   |      |      | 72   |      |     | 110 |       | Unit |
|-------------------------|------------|------|------|------|------|------|------|------|------|------|-----|-----|-------|------|
| Characteristics         | Conditions | min  | typ  | max  | min  | typ  | max  | min  | typ  | max  | min | typ | max   |      |
| Operating input voltage |            | 18   | 24   | 36   | 36   | 48   | 75   | 43   | 72   | 110  | 66  | 110 | 154   | ٧    |
| Input surge             | < 100ms    |      |      | 50   |      |      | 100  |      |      | 150  |     |     | 250   | ٧    |
| Undervoltage turn-on    |            |      | 17,5 | 17,9 |      | 35   | 35,8 |      | 41,7 | 42,6 |     | 64  | 65,4  | ٧    |
| Undervoltage turn-off   |            | 14,8 | 15,3 |      | 29,4 | 30,5 |      | 35,2 | 36,5 |      | 54  | 56  |       | ٧    |
| Overvoltage turn-off/on |            | 36,3 | 37,8 | 39,6 | 76   | 79   | 82,5 | 111  | 115  | 121  | 154 | 162 | 170,9 | ٧    |
| Input current           | Vin min    |      | 8    | 10   |      | 7    | 10   |      | 6    | 10   |     | 3   | 6     | Α    |
| No-load input power     |            |      | 10   |      |      | 10   |      |      | 10   |      |     | 10  |       | w    |
| Peak inrush current     | Vin max    |      |      |      |      |      |      |      | 180  |      |     |     |       | Α    |
| Rise time inrush        |            |      |      |      |      |      |      |      | 20   |      |     |     |       | μs   |
| Start-up time           |            |      |      |      |      |      |      |      | 60   |      |     |     |       | ms   |

# **Input Fuse**

A fuse mounted inside the converter protects against damages in case of a failure. The fuse is not user-accessible. Reverse polarity at the input will cause the fuse to blow .

| Model | Fuse type  | Rating | Reference   |
|-------|------------|--------|-------------|
| 24V   | Litllefuse | 15A    | 251015HE    |
| 48V   | Bussman    | 15A    | BK1/MCRW15A |
| 72V   | Busmann    | 15 A   | BK1/MCRW15A |
| 110V  | Littlefuse | 10A    | 251010HAT1L |

# Input Transient Protection / Electromagnetic Compatibility (EMC)

A VDR (Voltage Dependent Resistor) and a common mode input filter form an effective protection against input transients in severe environment like railways with EN50155.





# **Electrical Output Data**

General conditions : 25°C ambiant.

Output data for V1, V2 . V3 configured in high Power Version (Vicor Module) - Input 24, 110Vdc

| Output                 |               |     | 3V3  |     |     | 57  |     |      | 12V |      |      | 15V |      |      | 24V |      |      | 28V |      |      | 48V |      | Unit  |
|------------------------|---------------|-----|------|-----|-----|-----|-----|------|-----|------|------|-----|------|------|-----|------|------|-----|------|------|-----|------|-------|
| Characteristics        | Conditions    | min | typ  | max | min | typ | max | min  | typ | max  | min  | typ | max  | min  | typ | max  | min  | typ | max  | min  | typ | max  |       |
| Output voltage         |               |     | 3V3  |     |     | 5   |     |      | 12  |      |      | 15  |      |      | 24  |      |      | 28  |      |      | 48  |      | ٧     |
| Trim range             | Potentiometer | з   |      | 3,6 | 4,5 |     | 5,5 | 10,8 |     | 13,2 | 13,5 |     | 16,5 | 21,6 |     | 26,2 | 25,2 |     | 30,8 | 43,2 |     | 51,8 | ٧     |
| Overvoltage protection |               |     |      | 4,5 |     |     | 6,5 |      |     | 14,9 |      |     | 18,5 |      |     | 29,1 |      |     | 34   |      |     | 58   | ٧     |
| Nominal output current |               | 0   | 15   | 15  | 0   | 15  | 15  | 0    | 00  | 8,3  | 0    | 6   | 6,7  | 0    | 4   | 4,2  | 0    | 3,5 | 3,6  | 0    | 2   | 2,1  | Α     |
| Output current limit   |               |     | 17,5 | 21  |     | 25  | 27  |      | 9,5 | 11   |      | 7,6 | 8,7  |      | 4,8 | 5,7  |      | 4,1 | 5    |      | 2,4 | 2,8  | Α     |
| Output noise           | 20MHz         |     | 25   |     |     | 30  |     |      | 30  |      |      | 30  |      |      | 50  |      |      | 50  |      |      | 50  |      | m/Vpp |
| Efficiency             |               |     | 75   |     |     | 83  |     |      | 87  |      |      | 88  |      |      | 87  |      |      | 87  |      |      | 86  |      | %     |
| Load Regulation        | Vin nom.      |     |      | 0,4 |     |     | 0,4 |      |     | 0,4  |      |     | 0,4  |      |     | 0,4  |      |     | 0,4  |      |     | 0,4  | %     |

Output data for V1, V2 . V3 configured in high Power Version (Vicor Module) - Input 48, 72Vdc

| Output                 |               |     | 3V3 |     |     | 5V  |     |      | 12V  |      |      | 15V  |      |      | 24V |      |      | 28V |      |      | 48V |      | Unit |
|------------------------|---------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|-----|------|------|-----|------|------|-----|------|------|
| Characteristics        | Conditions    | min | typ | max | min | typ | max | min  | typ  | max  | min  | typ  | max  | min  | typ | max  | min  | typ | max  | min  | typ | max  |      |
| Output voltage         |               |     | 3V3 |     |     | 5   |     |      | 12   |      |      | 15   |      |      | 24  |      |      | 28  |      |      | 48  |      | V    |
| Trim range             | Potentiometer | з   |     | 3,6 | 4,5 |     | 5,5 | 10,8 |      | 13,2 | 13,5 |      | 16,5 | 21,6 |     | 26,2 | 25,2 |     | 30,8 | 43,2 |     | 51,8 | V    |
| Overvoltage protection |               |     |     | 4,5 |     |     | 6,5 |      |      | 14,9 |      |      | 18,5 |      |     | 29,1 |      |     | 34   |      |     | 8    | V    |
| Nominal output current |               | 0   | 15  | 15  | 0   | 15  | 15  | 0    | 12   | 12,5 | 0    | 10   | 10   | 0    | 6   | 6,25 | 0    | 5   | 5,3  | 0    | 3   | 3,1  | Α    |
| Output current limit   |               |     | 26  | 31  |     | 25  | 27  |      | 14,4 | 17,5 |      | 11,5 | 13,5 |      | 7,1 | 9    |      | 6,1 | 7,2  |      | 3,6 | 4,2  | Α    |
| Output noise           | 20MHz         |     | 25  |     |     | 30  |     |      | 30   |      |      | 30   |      |      | 50  |      |      | 50  |      |      | 50  |      | mVpp |
| Efficiency             |               |     | 75  |     |     | 83  |     |      | 85   |      |      | 84   |      |      |     |      |      | 83  |      |      | 84  |      | %    |
| Load Regulation        | Vin nom.      |     |     | 0,4 |     |     | 0,4 |      |      | 0,4  |      |      | 0,4  |      |     | 0,4  |      |     | 0,4  |      |     | 0,4  | %    |

Output data for V3 configured in low Power Version (switching regulator)

| Output                   |            |      | 3V3     |      |      | 5V       |       |     | 12V |     |        | 15V   |     | Unit |
|--------------------------|------------|------|---------|------|------|----------|-------|-----|-----|-----|--------|-------|-----|------|
| Characteristics          | Conditions | min  | typ     | max  | min  | typ      | max   | min | typ | max | min    | typ   | max |      |
| Output voltage           |            |      | 3,3     |      |      | 5        |       | 8   | 12  |     |        | 15    |     | V    |
| Trim range (factory set) |            | 1    |         | 3,3  | 1    |          | 5     | 8   |     | 15  | 8      |       | 15  | V    |
| Overvoltage protection   |            |      |         |      |      |          |       |     |     |     |        |       |     |      |
| Nominal output current   |            |      | 6       | 6    |      | 5        | 8     |     | 3   | 3   |        | 3     | 3   | Α    |
| Output current limit     |            |      |         | 12   |      |          | 16    |     |     | 4   |        |       | 4   | Α    |
| Output noise             |            |      |         | 200  |      |          | 150   |     |     | 200 |        |       | 200 | mVpp |
| Load regulation          |            |      |         | 0,4  |      |          | 0,4   |     |     | 0,4 |        |       | 0,4 | %    |
| Efficiency               |            |      | 86      | 90   |      | 83       | 90    |     | 89  | 91  |        | 89    | 91  | %    |
| Max capacitive Load      |            |      |         | 1000 |      |          | 1500  |     |     | 200 |        |       | 200 | μF   |
|                          |            | V2=3 | 9V3, 5V | 12V  | V2=5 | , 12, 15 | , 24V |     |     | V2= | 24V or | 48Vdc |     |      |



#### **Parallel and Series Connection**

Any output can be connected in series with any other output from the same converter or from a separate converter, an external diode across each output may be required. The maximum output current of a serial-connected outputs is limited by the output with the lowest current limit. Output voltages above 48V (SELV - Safety Extra Low Voltage) require additional safety measures in order to comply with international safety requirements.

Parrallel operation is very simple . When 2 outputs will be connected together , they will automatically current share without current share

# **Redundant Systems Operation**

When systems require a very high level of reliability and should work normally in the event of a failure, N+1 redundancy is implemented where N is the number of converter to support power requirement. An example of a redundant system using 3 converters is shown Fig1.If one converter fail, the remaining ones still delivers the power to the loads. The 'paralleling' active circuit designed on every output of the PST22 replace the conventionnal diodes by MOSFET with very low RdsON thus divided by 10 the power losses.

### Hold-up time

The converters provide low hold-up time. If a hold-up time is required (some railways applications for example), use external input capacitors of adequat size.

Formula for additional external input capacitor :  $C = 2*Pout*th*100/(V^2-Vi^2)/n$ 

#### whereas:

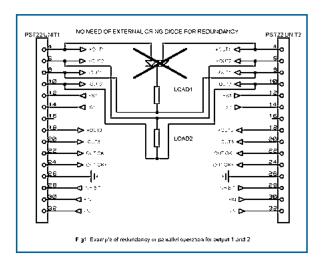
C = external input capacitance [mF]

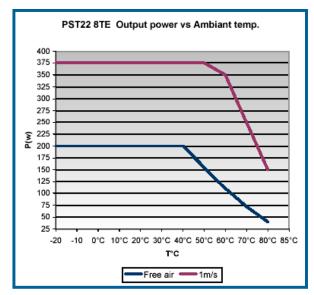
P<sub>out</sub> = output power [W] n = efficiency [%] t<sub>h</sub> = hold-up time [ms] V<sub>i</sub> = minimum input voltage

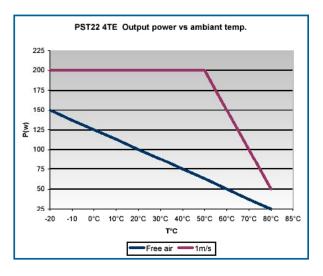
#### **Hot Swap**

The low input inrush current allows the unit to be hot swapped. Nevertheless care must be taken with senses lines and we recommend to consult our technical support before operating in the mode.

# **Output Current Limitation**


All outputs are continously protected against short-circuit by a constant current limitation.(no foldback)


#### **Thermal Considerations**


When a converter is mounted in free air, in convection cooling, and is operating at its nominal output power at the max. ambiant temperature, the temperature measured on the heatsink should not exeed 100°C. The derating curves show the max power available from the converter for the 4TE and 8TE versions versus ambiant temperature.

#### Thermal protection

A temperature protection is integrated in each Vicor modules, disabling output when heatsink temperature exceed 105°C . the converter automatically restart, when the temperature drops below this limit.











# Primary Inhibit (Remote On/Off)

The inhibit input disables (logic low, pull down or short circuit between Inhibit and -In) or enables (logic high TTL, pull up or open-circuit between Inhibit and -In) the converter. This signal is referenced to the input voltage and will disable/enable all outputs at the same time.In systems consisting of several converters, this feature may be used to sequence the activation of the different converters.

# **Output Voltage Adjustment**

The converter offer adjustment for each output voltage V1,V2,V3 though a potentiometer. In case of V3 is configured in low power version, the ajustment is factory set for V3.

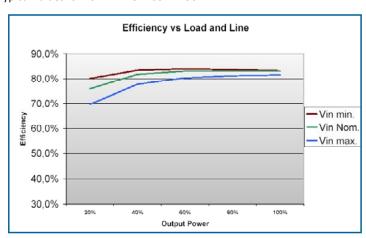
#### **Sense Lines**

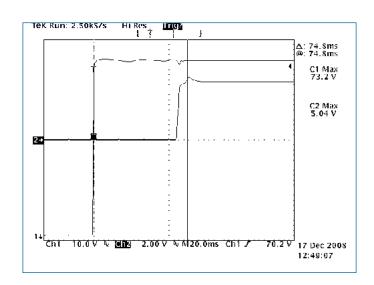
This feature enable compensation of voltage drop across the connector contacts and the load lines. This fonctionnality is implemented on V1 only.

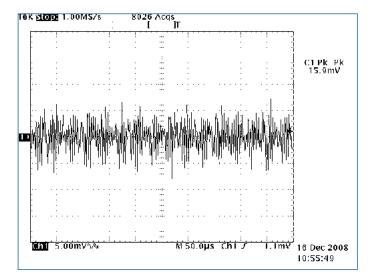
The voltage between any sense line and its respective power output pin (as measured on the connector) should not exceed the following values

| Output type | Total drop | Negative line drop |
|-------------|------------|--------------------|
| V1          | < 0.5V     | < 0.25V            |

### **Powergood**


The converter has different levels of signalling the good operation: An input green led on the front panel indicate that input voltage is present at the input after the internal fuse.


Three green leds on the front panel indicate the presence of each output voltage.


An open collector Powergood (pin 22 and 24) is active low if all the output voltages are working correctly.

#### **Waveforms**

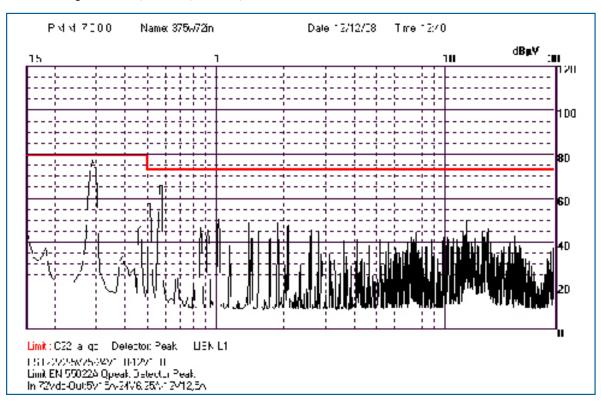
Typical values for PST 2272-5V100-24150-











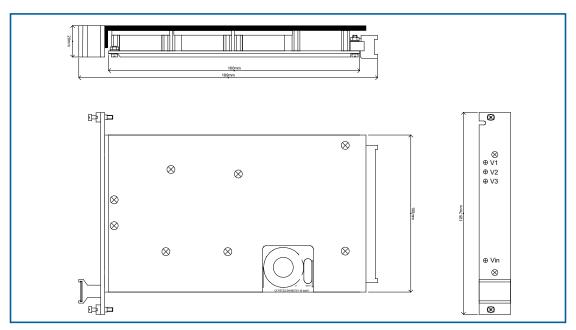

# **Electromagnetic Immunity**

|                                     | Standard     | Level | Value     | Waveform    | Source imped. | Test procedure   | Mode |
|-------------------------------------|--------------|-------|-----------|-------------|---------------|------------------|------|
| Supply surge                        | EN50155      | В     | 1,4 * VIN | 0,1/1/0,1s  | 10hm          | 1 positive surge | OP   |
| Direct transients                   | EN50155      | D     | 1800V     | 5 / 50 µs   | 5 Ohms        | 5 pos., 5 neg.   | OP   |
| Surges                              | EN 61000-4-5 | 3     | 2000V     | 1,2 / 50 µs | 12 ohms       |                  | OP   |
| Electrostatic discharge (to case)   | EN 6100-4-2  | 4     | 8000V     | 1/50µs      | 330 Ohms      | 10 pos., 10neg.  | OP   |
| Electrical fast<br>transients/burst | EN 61000-4-4 | 4     | 4000V     | 5 / 50µs    | 50 ohms       |                  | OP   |

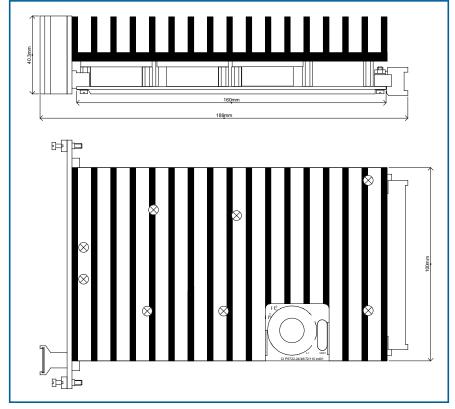
# **Electromagnetic Emissions**

Level according to EN55011, EN55022, EN50155, EN50121-3-2




# **Immunity to Environmental Conditions**

| Test method  | Standard                 | Test conditions          | Status                                          |
|--------------|--------------------------|--------------------------|-------------------------------------------------|
| Damp<br>Heat | MIL STD 810D Proc. 507-2 | IHUMMIN 93 % 40°C % days | Conformal coating option<br>only, built to meet |
| Shock        |                          | 50g / 11ms<br>5g / 30ms  | Built to meet                                   |
| Vibrations   | MIL STD 810D Proc. 514-3 |                          | Built to meet                                   |




# **Mechanical data**

Solder side of the PCB protected by PBT sheet.



S option: 4TE version



8TE version





# Safety and Installations Instructions

# **Connector Pin Allocation**



Ref: 05H15MGWVZ32/K1 - 2E ROLF HILLER

DIN 41612 Male H15 - Short version

| PIN |         | Description           |
|-----|---------|-----------------------|
| 4   | Vo1+    | Output 1+             |
| 6   | Vo2+    | Output 2+             |
| 8   | Vo1-    | Output 1-             |
| 10  | Vo2-    | Output 2-             |
| 12  | S1+     | Output 1 Sense +      |
| 14  | S1-     | Output 1 Sense -      |
| 16  | NC      | No connection         |
| 18  | Vo3+    | Output 3+             |
| 20  | Vo3-    | Output 3-             |
| 22  | Out OK- | Output good collector |
| 24  | Out OK+ | Output good emitter   |
| 26  | Ground  | Ground                |
| 28  | Inhibit | Inhibit               |
| 30  | VI+     | Input +               |
| 32  | VI-     | Input -               |



#### Installations Instructions

These converters are components, intended exclusively for integration into other equipment by an industrial assembly process or by a professionally competent person. Installation must strictly follow the safety regulations in respect of the enclosure, mounting, creepage and clearance distances, markings of the end-use application.

Connection to the system shall be made via the female connector H15. Pin 26 (Earth) is a leading pin and is connected to the case. For safety reasons it is essential to connect this pin to the protective earth of the supply system.

The +Vin is internally fused. This fuse is designed to protect the converter against overcurrent caused by a failure, but may not be able to satisfy all requirements. External fuses in the wiring circuit to one or both input pins (30 or 32) may be necessary to ensure compliance with local requirements.

Do not open the converters, or the warranty will be invalidated. Make sure that there is sufficient airflow available for convection cooling. This should be verified by measuring the case of temperature at the speci-

# **Standards and Approvals**

The converters are built to meet the safety standards IEC 62368-1, EN 62368-1, UL 62368-1 and CSA 62368-1.

#### **Electric Strength**

| Characteri   | stic                                        | Input to Earth | Input to | Output to | Output to | Unit  |
|--------------|---------------------------------------------|----------------|----------|-----------|-----------|-------|
|              |                                             |                | Output   | Earth     | Output    |       |
| Electric     | Design strength                             | 1500           | 3000     | 500       |           | Vrms  |
| strength     | Factory test for production<br>units (>10s) | 2000           | 2000     | 500       |           | Vdc   |
| Insulation r | esistance                                   |                |          | > 100     | >100      | Mohms |

# **Temperatures**

|            |                          |      | Standard |      |      | T option |      |    |
|------------|--------------------------|------|----------|------|------|----------|------|----|
| Conditions | Min.                     | Тур. | Max.     | Min. | Typ. | Max.     | Unit |    |
| Ambiant    | Operating (see derating) | -20  |          | +71  | -40  |          | +71  |    |
| Heatsink   | Operating (see defating) | -20  |          | +100 | -48  |          | +100 | °C |
| Storage    | Not operating            | -40  |          | +125 | -40  |          | +125 |    |

# Reliability

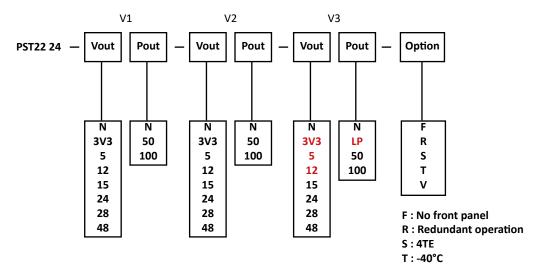
| MIL-HDBK-217F, notice 2 | Model             | Heatsink Temp. | GB     | GF     |
|-------------------------|-------------------|----------------|--------|--------|
|                         |                   | 40°C           | 335000 | 195000 |
| MTBF ( Hours)           | PST2272 3 outputs | 70°C           | 165000 | 97500  |
|                         |                   | 100°C          | 103500 | 61500  |

#### **Cleaning Agents and Process**

The converters are not hermetically sealed. In order to avoid possible damage, any penetration of liquids shall be avoided.

#### **Railway Application**

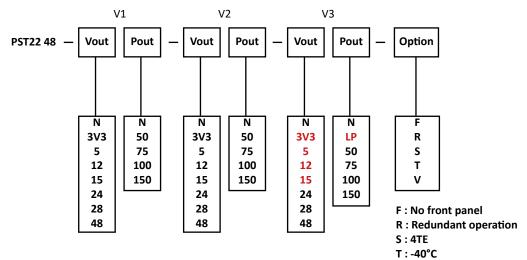
The converters have been designed observing the railway standards EN 50155 and EN 50121. All boards can be protected by a conformal coating as an option (-V).


# Isolation

The electric strength test is performed in the factory in accordance with IEC/EN 62368.



# Options and configurations

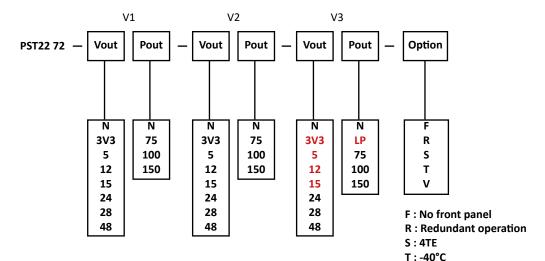

Pout max : 200W IN max : see table page 2



LP: see page 3 Low Power Version V: Conformal coating

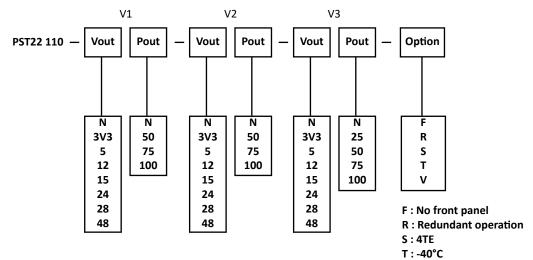
Pout max: 400W

IN max : see table page 2




LP: see page 3 Low Power Version V: Conformal coating




# **Options and configurations**

Pout max : 450W IN max : see table page 2



LP : see page 3 Low Power Version V : Conformal coating

Pout max : 300W IN max : see table page 2



LP: see page 3 Low Power Version V: Conformal coating