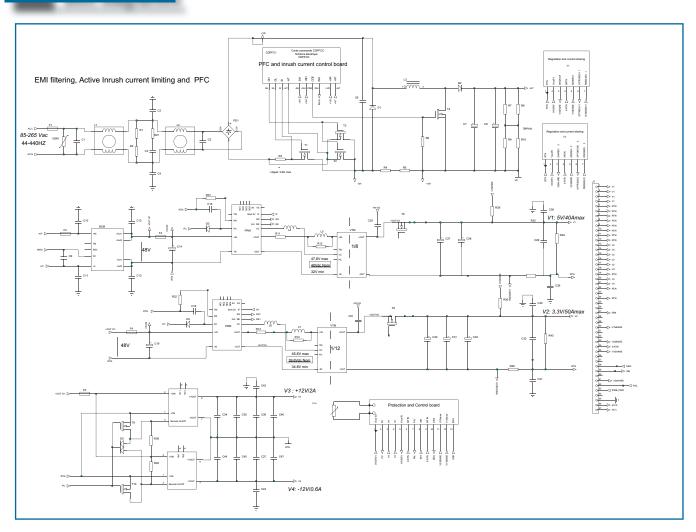


CPCI AC

Standard product AC-DC CompactPCI® 300W

Features

- ▶ 85-265Vac or 100-350Vdc input voltage ranges
- ▶ 4 outputs
- ▶ Output power 300W
- ▶ Power Factor Correction EN61000-3-2
- Active very low inrush limitation
- ▶ Surge and transient protection
- ▶ Current sharing & N+1 redundancy
- ▶ 3U x 8TE x 160mm


Safety IEC/EN 60950-1, RoHS lead-free-solder compliant

The CPCI AC, AC-DC CompactPCI® compliant with PICMG 2.11 standard, incorporates input and output protections and filtering, signalling features, required in severe environments for industrial, defense, avionic applications. The PSU provides significant advantages, high reliability thanks to the integration of Vicor Corp. modules, high efficiency, low ripple and noise levels, input-to-output isolation, soft start, MOFSET based active very low inrush limitation circuit, overtemperature protection, input over/undervoltage lockout. The input is protected against surges and transients and EMI filtered. The outputs are countinuously short-circuit proof. LEDs in front panel indicates the status of the psu.

Bloc diagramm

Options Description

MIL-STD ruggedized (M)

Meet MIL-STD 461E CE102, MIL-STD 1399-300A, MIL-STD810E shock & vibrations. Laboratory certification.

-40°C operation (T)

The thermal grade of the Vicor the DC/DC converters used and other components are changed to comply with low ambiant temperature.

Conformal coating (V)

During manufacturing process , when V option is specified, components and pcb are covered with an acrylic coating to address high level of ambiant humidity application.

61000-4-5 (Y)

Include a common mode surge protection 61000-4-5 Level 3 2KV based on gas discharger and VDR to meet criteria A. BE CAREFUL not to apply dielectric test if this option is choosen. If no Y option, criteria B is met.

Input

Electrical Input Data

In				Unit	
Characteristics	Conditions	min	typ	max	
Operating input voltage		85		265	Vac
Operating input voltage		100		350	Vdc
Frequency		44	50	440	Hz
Power Factor	230Vac, 50Hz, Pnom.		0,96	0,98	
Input current	At Vin min			4,1	Α
No-load input power	At Vin typ			15	W
Peak inrush current	Vin max			4	Α
Start-up time				1	S

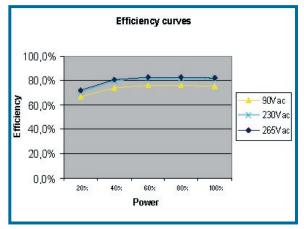
Input Fuse

A fuse mounted inside the converter protects against damages in case of a failure. The fuse is not user-accessible. In DC mode, reverse polarity at the input is protected and will not cause the fuse to blow .

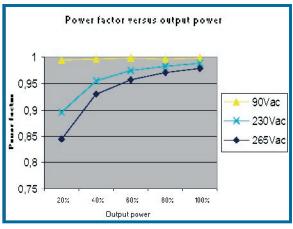
Model	Fuse type	Rating	Reference
CPCI AC	Schurter	5A	340300173

Input Transient Protection

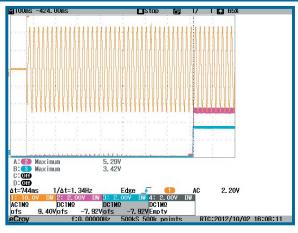
A VDR (Voltage Dependent Resistor) and a common mode input filter form an effective protection against input transients in severe environments.


Output

Electrical Output Data


General conditions: 25°C ambiant.

Max output power 325W overall Output ۷1 ۷4 Unit Characteristics Conditions min max min max min typ max min max typ typ tvp Output voltage 4,95 5,05 3,26 3,33 11,5 12.5 -11,5 -12.5 ٧/ Set point accuracy Trim range 5,5 3,6 Overvoltage protection 13,6 -13,6 V Output current 40 0 50 Α Output current limit 48 59 1,5 Α 20MHz 75 50 90 Output noise 90 mVpp Line Regulation Vout nom. 0,05 0,05 0,05 0,05 % Load Regulation Vin nom.


Efficiency curve

Power factor curve

Establisment time curve

Parallel operation & current share

Parrallel operating is possible for V1, V2 with active current sharing. The signals SHARE are single wire. All V1 SHARE of the different psu in parrallel will have to be connected together. (Same for V2 SHARE).

Redundant Systems Operation

When systems require a very high level of reliability and should work normally in the event of a failure, N+1 redundancy is implemented where N is the number of converter to support power requirement. If one converter fail, the remaining ones still delivers the power to the loads.

Redundant operation is directly provided without need of external diodes and is made internally by an active MOFSET circuit.(reduction of losses).

Hold-up time

The converters provide internal hold-up time (see curve).

Hot Swap

The unit incorporates active limitation by MOFSET with very low value of inrush current allowing hot swap operation. See curve.

Output Current Limitation

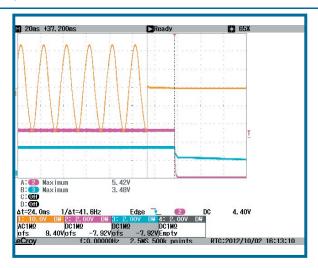
All outputs are continously protected against short-circuit by a constant current limitation (no foldback) with automatic recovery. See Page 2 for the value.

Thermal Considerations

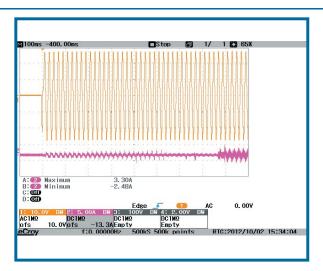
When a converter is mounted in free air, convection cooling and is operating at its nominal output power at the max. ambiant temperature, the temperature measured on the heatsink should not exeed 95°C. The derating curves show the max power available from the converter versus ambiant temperature.

Thermal protection & degrade signal

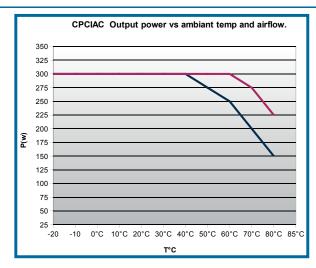
A temperature protection (OTP) is integrated in the unit, disabling output when heatsink temperature exceeds 90°C (+/-5°C). The converter automatically restarts, when the temperature drops below 55°C (+/-5°C). Nevertheless, exceeding the max operating temperature may cause failures of the converter.


A degraded signal (DEG), open collector, is provided when temperature exceed 80°C +/-5°C(active low) and is reset below 70°C +/-5°C. This can be monitored external system to reduce power and avoid thermal protection. DEG is opened when temperature is within operating range.

Overvoltage protection


An OVP is incorporated on each output. All outputs are cut if an OVP is detected. This protection is latch style (Recovery after AC reset or inhibit).

Output	OVP value
+5V	5,66V
+3V3	3,80V
+12V	13,6V
-12V	-13,6V


Hold up time

Inrush current Active Limitation

Output power ambiant 2ms + 4ms

Inhibit (Remote On/Off)

A INH signal activate & de-activate the output voltages

- outputs inhibited: INH level LOW

Output Voltage Adjustment

The converter outputs can be factory adjustable to different values than standard ones. Consult factory.

Sense Lines

This feature enables compensation of voltage drop across the connector contacts and the load lines. This fonctionnality is implemented on V1 $\,\&$ V2 only.

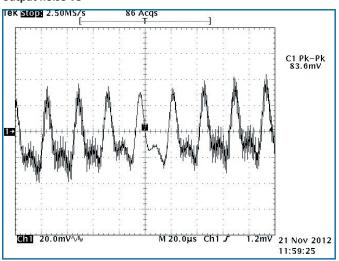
The voltage between any sense line and its respective power output pin (as measured on the connector) should not exceed the following values at nominal output voltage.

Output type	Total drop	Positive line drop
V1, V2	< 0.5V	< 0.25V

Powerfail & LED

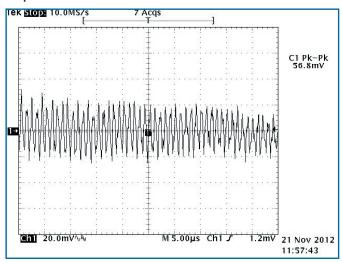
A FAIL signal (open collector) indicate the working state of the psu. The signal is open when all outputs voltage are in their range and "0" if one output is out of range.

A single bi-color LED in the front panel indicates :

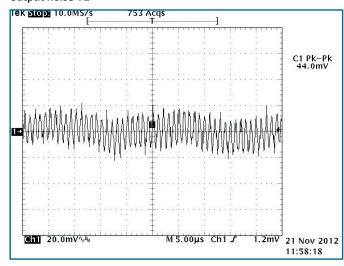

- Green : Input OK- Red : output failure

Output	Minimum value	Maximum value
+5V	4,40V	5,55V
+3V3	2,99V	3,65V
+12V	10,7V	13,2V
-12V	-10,7V	-13,1V

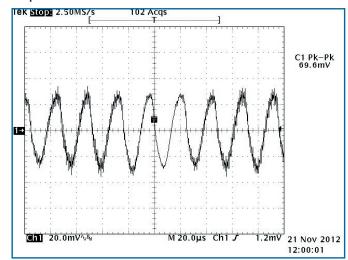
Enable & IPMB_PWR


EN# signal activates the psu when connected to ground. IPMB PWR goes high when 5V output is OK

output noise V3



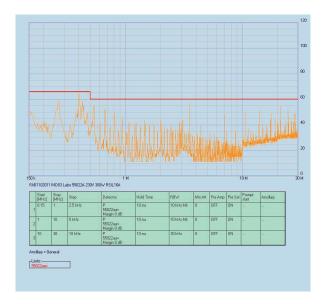
Waveforms


output noise V1

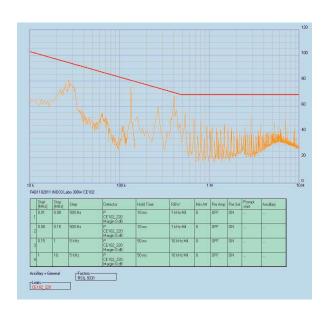
output noise V2

output noise V4

Electromagnetic


Electromagnetic Immunity

		Standard		Level	Value	Waveform	Source imped.	Test procedure	Mode	Criteria
			DM		1KV	1,2 / 50 µs	12 ohms		OP	В
Surges	Qualified	EN 61000-4-5	CM	3	2KV	1,2 / 50 µs	12 ohms		OP	В
			CM		2KV	1,2 / 50 µs	12 ohms	Y option	OP	Α
Electrostatic discharge (to case)	Qualified	EN 6100-4-2		4	8000V	1 / 50µs	330 Ohms	10 pos., 10neg.	OP	В
Electrical fast transients/burst	Qualified	EN 61000-4-4		4	4000V	5 / 50µs	50 ohms		OP	В


Note: Qualified for EN 61000-4-2, -3, -4, -5, -6, -11, EN 61000-3-2, EN 61000-3-3

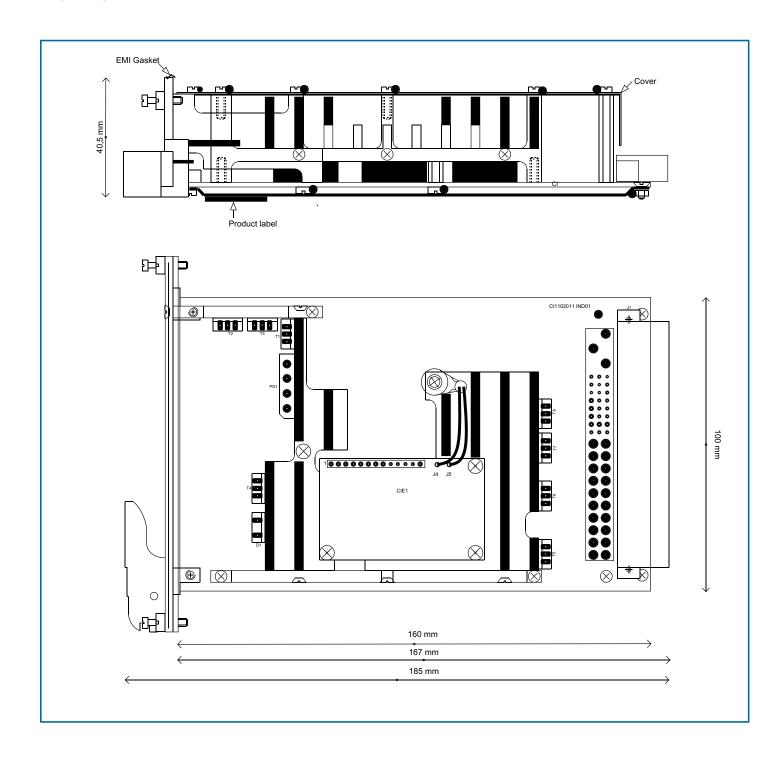
Electromagnetic Emissions

Level according to EN55022A

MIL-STD461E CE102 M option

Immunity to Environmental Conditions

Test method	Standard	Test conditions	Status
Damp Heat	MIL STD 810F Proc. 507-2	Humidity 93 %, 40°C, 56 days	Conformal coating option only (V), qualified
Shock	MIL STD 810F Proc.516.3	20g / 18ms half size 5g / 30ms	Qualified
Vibrations	MIL STD 810F Proc. 514-5	4-80Hz (2,8m/s²)²/Hz, non operating 160-500Hz (0,175m/s²)²/Hz, non operating	Qualified
	MIL STD 167A-1A	Non operating	Qualified

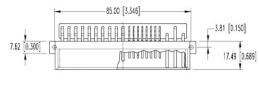


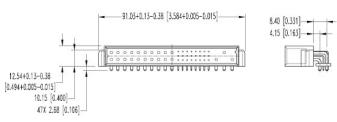
Mechanical data

Size: 3U x 8TE x 160mm

Solder side of the PCB protected by PBT sheet.

Weight: 600g





Connector Pin Allocation

Positronic 47 pts

	Positronic PCIH47M400A1/AA							
PIN	De	escription						
1, 2, 3, 4	V1	Output 1 +						
5, 6, 7, 8, 9, 10, 11, 12, 19, 22, 24	RTN	Outputs 0V						
13, 14, 15, 16, 17, 18	V2	Output 2 +						
20	V3	Output 3+						
21	V4	Output 4-						
23, 25, 26, 28, 29, 31, 32, 36, 37, 40, 44	NC	Not Connected						
27	EN#	Enable						
30	V1 SENSE	Remote sense V1+						
33	V2 SENSE	Remote sense V2+						
34	S RTN	Remote sense 0V						
35	V1 SHARE	Current sharing V1						
38	DEG	Degrade mode signal						
39	INH	Inhibition						
41	V2 SHARE	Current sharing V2						
42	FAIL	Signal Fail						
43	IPMB_PWR							
45	EARTH	Earth						
46	AC/N	AC Neutral						
47	AC/L	AC Line						

Safety & Installation

These converters are components, intended exclusively for integration into other equipment by an industrial assembly process or by a professionally competent person. Installation must strictly follow the safety regulations in respect of the enclosure, mounting, creepage and clearance distances, markings of the end-use application.

Connection to the system shall be made via the female connector Positronic.

Pin 45 (Earth) is a leading pin and is connected to the case. For safety reasons it is essential to connect this pin to the protective earth of the supply system.

The AC/L is internally fused. This fuse is designed to protect the converter against overcurrent caused by a failure, but may not be able to satisfy all requirements. External fuses in the wiring circuit to one or both input pins (46 or 47) may be necessary to ensure compliance with local requirements.

Do not open the converters, or the warranty will be invalidated. Make sure that there is sufficient airflow available for convection cooling. This should be verified by measuring the case of temperature at the specified measuring point, when the converter is operated in the end-use

Standards and Approvals

The converters are built to meet the safety standards IEC 60950-1, EN 60950-1.

'Built to meet' mentionned in the different paragraphs of the datasheet means that Power System Technology has designed the product to meet the standard but not certified it in a laboratory.

'Qualified' means that the test has been made in a certified laboratory.

Electric Strength

Characterist	ic	Input to Earth	Input to Output	Output to Earth	Output to Output	Unit
Electric	Design strength	1500	3000	500		Vrms
strength	Factory test for production units (>10s)	2000	2000	500		Vdc
Insulation res	sistance			> 100	>100	Mohms

Note: If Y option is choosen, do not apply dielectric test.

Temperatures

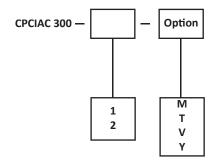
		Standard			T option			
Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Ambiant	Operating (see densting)	-20		+71	-40		+71	
Heatsink	Operating (see derating)	-20		+100	-40		+100	°C
Storage	Not operating	-40		+125	-40		+125	

Reliability

MIL-HDBK-217F, notice 2	Model	Heatsink Temp.	GB	GF
		40°C	285000	165000
MTBF (Hours)	CPCIAC	70°C	139500	82300
		100°C	86600	51000

Cleaning Agents and Process

These converters are components, intended exclusively for integration The converters are not hermetically sealed. In order to avoid possible into other equipment by an industrial assembly process or by a profesdamage, any penetration of liquids shall be avoided.


Isolation

The electric strength test is performed in the factory in accordance with IEC/EN 60950.

Options and configurations

Max. power available : 300W IN max : see table page 2

1:3,3V/50A,5V/40A,12V/1A,-12V/1A

2: 3,3V/50A, 5V/40A, 12V/5A, -12V/1A consult factory

CPCIDC consult factory